好心情说说吧,你身边的情绪管理专家!
好心情说说专题汇总 心情不好怎么办
勾股定理教案
作为一名优秀的教育工作者,有必要进行细致的教学设计准备工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么问题来了,教学设计应该怎么写?以下是小编收集整理的《勾股定理》教学设计,欢迎阅读,希望大家能够喜欢。
初中数学勾股定理教学设计 篇1一、教学目标
(一)知识点
1、体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理。
2、会利用勾股定理解释生活中的简单现象。
(二)能力训练要求
1、在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想。
2、在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力。
(三)情感与价值观要求
1、培养学生积极参与、合作交流的意识。
2、在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。
二、教学重、难点
重点:探索和验证勾股定理。
难点:在方格纸上通过计算面积的方法探索勾股定理。
三、教学方法
交流探索猜想。
在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系。
四、教具准备
1、学生每人课前准备若干张方格纸。
2、投影片三张:
第一张:填空(记作1.1.1 a);
第二张:问题串(记作1.1.1 b);
第三张:做一做(记作1.1.1 c)。
五、教学过程
ⅰ、创设问题情境,引入新课
出示投影片(1.1.1 a)
(1)三角形按角分类,可分为_________、_________、_________。
(2)对于一般的三角形来说,判断它们全等的条件有哪些?对于直角三角形呢?
(3)有两个直角三角形,如果有两条边对应相等,那么这两个直角三角形一定全等吗?
初中数学勾股定理教学设计 篇2[教学分析]
勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活”正是这章书所体现的主要思想。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系
查看更多>>作为一位优秀的人民教师,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的初中数学《勾股定理》教案模板,希望对大家有所帮助。
中学数学教案勾股定理 篇1教学 目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学 重点:
分式通分的理解和掌握。
教学 难点:
分式通分中最简公分母的确定。
教学 工具:
投影仪
教学 方法:
启发式、讨论式
教学 过程 :
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .
根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:
最简公分母为:xx ,然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:
(1)xx,xx,xx ;
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy 2
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a 2 b 2 c 2
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:
(1)取各分母系数的最小公倍数;
(2)凡出现的字母为底的幂的因式都要取;
(3)相同字母的幂的因式取指数最大的。
取这些因式的'积就是最简公分母。
中学数学教案勾股定理 篇2 查看更多>>伴随着各行各业的衍生,我们可能会需要一些学习资料等范文,范文可以为我们平时的生活提供不少帮助,你是否在寻找高质量的范文呢?小编花时间特意编辑了勾股定理教案汇总,仅供参考,欢迎阅读。
勾股定理教案 篇118.1 勾股定理(第1课时)教学案例
南漳县肖堰中学 尹世强
教学任务分析
教学目标
知识技能
了解勾股定理的文化背景,体验勾股定理的探索过程。
数学思想
在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
解决问题
1. 通过拼图活动,体验数学思维的严谨性,发展形象思维。
2. 在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。
情感态度
1. 通过对勾股定理历史的了解,感受数学文化,激发学习热情。
2. 在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。
重点
探索和证明勾股定理。
难点
用赵爽证法证明勾股定理。
教学流程安排
活动流程图
活动内容和目的
活动1 欣赏图片,了解历史
活动2 探索勾股定理
活动3 证明勾股定理
活动4 小结、布置作业
通过对赵爽弦图的了解,激发起学生对勾股定理的探索兴趣。
观察、分析方砖图和方格图,得出直角三角形的性质——勾股定理,发展学生分析问题的能力。
通过剪拼赵爽弦图证明勾股定理,体会数形结合思想,激发探索精神。
回顾、反思、交流、布置课后作业,巩固、发展、提高。
教学过程设计
问题与情境
师生行为
设计意图
[活动1]
xx年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”。这个图案是本届大会的会徽。
(1)你见过这个图案吗?
(2)你知道为什么把这个图案作为这次大会的会徽吗?
教师出示大会照片及图片。
学生观察图片发表见解。
教师补充说明:这个图案被称为“赵爽弦图”。介绍勾股定理的历史。
本次活动中,教师应重点关注:
(1)是否提起了学生对勾股定理的历史的兴趣。(2)学生对勾股定理的了解程度。
从实际生活入手,提出“赵爽弦图”,为学生探索活动创设情境,激发学生学习兴趣。
[活动2]
毕达哥拉斯是古希腊著名的数学家,相传在25xx年前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
(1)观察方砖图,你能有什么发现吗?
(
查看更多>>教案课件在老师少不了一项工作事项,写好教案课件是每位老师必须具备的基本功。教案是加强师生互动的重要方式。励志的句子编辑经过细心挑选这篇文章的题目为“勾股定理课件”,祝你能够在学习和工作中获得更多的收获!
勾股定理课件 篇1教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗?
(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。
(2)再分别以这个三角形的三边向三角形外作3个正方形。
学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。
1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系?
2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。
3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系?
4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法?
学生活动:先独立思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。
1、你能拼出哪些图形?能拼出正方形和直角梯形吗?
2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。
学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。
1.在rt△abc中,∠c=900,∠a,∠b,∠c的对边分别为a,b,c
已知a=6,b=8.求c.
已知c=25,b=15.求a .
学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。
教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数学运用等方向进行总结。
(1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形;
(2)再分别以这个三角形的三边为直径向三角形外作三个半圆,这三个半圆的面积之间有什么关系?看看又会有什么新的数学发现?
勾股定理课件 篇21.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题,逐步培养“数形结合”和“转化”数学能力。
2.过程与方法目标:发展学生的分析问题能力和表达能力。经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通
查看更多>>